首页> 外文OA文献 >Integrated autothermal reactor concepts for oxidative coupling and reforming of methane
【2h】

Integrated autothermal reactor concepts for oxidative coupling and reforming of methane

机译:集成的自热反应器概念,用于甲烷的氧化偶联和重整

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A direct method of converting natural gas into ethylene is the heterogeneously catalyzed oxidative coupling of methane (OCM), however, only with hydrocarbon yields limited to 30-35% despite enormous efforts to optimize the catalysts. By combining the exothermic OCM with a secondary process, namely steam reforming of methane (SRM), the methane conversion can be increased significantly while improving temperature control and simultaneously producing valuable synthesis gas. In this thesis, two different reactor concepts were developed to integrate the OCM and SRM reactions in an overall autothermal process, so that the OCM process is effectively cooled and the generated reaction energy is efficiently used to produce synthesis gas. The integration is most optimally achieved on the catalyst particle scale, which would eliminate the need for external heat exchange and opens up the possibility to use distributive oxygen dosing with which much higher product yields can be achieved. It is proposed to use a dual function catalyst particle in which the two chemical processes are physically separated by an inert, porous layer, such that additional diffusional resistances are intentionally created to control the reaction rates. This concept was studied with numerical simulations on the scale of a single catalyst particle and on reactor scale. It was found that the SRM and OCM reaction rates could be effectively tuned to achieve autothermal operation at the reactor scale, while the methane conversion was enhanced from 44% to 55%. An alternative integrated process can be achieved by combining OCM and SRM in a heat exchange reactor comprising of two separate reaction chambers which are thermally coupled. The OCM is carried out in packed bed reverse flow membrane reactor tubes submerged into a fluidized bed where the unconverted methane and byproducts from OCM are reformed, thus producing synthesis gas and consuming the reaction heat liberated by OCM. The feasibility of this concept is supported by experiments of OCM on a Mn/Na2WO4/SiO2 catalyst in a packed bed (porous Al2O3) membrane reactor. The results demonstrated that a C2 yield of 25-30 % can be achieved and that distributed feed of oxygen is optimal for the combined OCM/SRM reactor concept.
机译:将天然气转化为乙烯的直接方法是甲烷的异相催化氧化偶合(OCM),尽管烃类的优化努力很大,但烃的收率限制在30%至35%之间。通过将放热的OCM与辅助过程(即甲烷的蒸汽重整(SRM))相结合,可以显着提高甲烷的转化率,同时改善温度控制并同时产生有价值的合成气。本文提出了两种不同的反应器概念,以将OCM和SRM反应整合到整个自热过程中,从而有效地冷却OCM过程,并有效地利用所产生的反应能量生产合成气。在催化剂颗粒规模上最理想地实现了集成,这将消除对外部热交换的需求,并开辟了使用分布式氧定量给料的可能性,由此可以实现更高的产物收率。提出使用双功能催化剂颗粒,其中两个化学过程通过惰性多孔层物理地分开,从而有意产生附加的扩散阻力来控制反应速率。通过在单个催化剂颗粒的规模和反应器规模上的数值模拟研究了该概念。发现可以有效地调节SRM和OCM反应速率以在反应器规模上实现自热操作,同时甲烷转化率从44%提高到55%。通过将OCM和SRM结合在热交换反应器中,可以实现另一种集成工艺,该热交换反应器包括两个热耦合的独立反应室。 OCM在浸没在流化床中的填充床逆流膜反应器管中进行,在此处重整OCM的未转化甲烷和副产物,从而产生合成气并消耗OCM释放的反应热。通过在填充床(多孔Al2O3)膜反应器中的Mn / Na2WO4 / SiO2催化剂上进行OCM实验,支持了此概念的可行性。结果表明,可以实现25%至30%的C2收率,并且氧气的分散进料对于组合式OCM / SRM反应器概念是最佳的。

著录项

  • 作者

    Tiemersma, T.P.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 und
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号